Проектирование планарных силовых трансформаторов

В предыдущей статье были рассмотрены преимущества применения планарных трансформаторов в малогабаритных и мобильных устройствах. Также были приведены характеристики ферритовых сердечников, применяемых для конструирования планарных трансформаторов. В этой публикации предлагается методика расчета планарных трансформаторов для импульсных преобразователей прямого и обратного хода. О планарных трансформаторах больше информации на сайте!

Введение

Планарные трансформаторы могут выполняться как навесные компоненты, в виде сборки однослойных печатных плат или небольшой многослойной платы, либо встраиваться в многослойную печатную плату источника питания.

Важными преимуществами планарных магнитных компонентов являются:

очень малые размеры;
великолепные температурные характеристики;
малая индуктивность утечки;
отличная повторяемость свойств.
Измерения рабочих параметров планарных трансформаторов с Ш-образными сердечниками и обмотками, выполненными на базе многослойной печатной платы, показывают, что тепловое сопротивление этих устройств значительно (до 50%) ниже по сравнению с обычными трансформаторами с проволочной намоткой при том же эффективном объеме сердечника Ve. Это обусловлено более высоким отношением площади поверхности сердечника к его объему. Таким образом, имея повышенную охлаждающую способность, планарные трансформаторы способны справляться с большей плотностью проходной мощности, при этом удерживая рост температуры в допустимых пределах.

В настоящей брошюре описывается быстрый и простой метод проектирования планарных силовых трансформаторов, а также рассматриваются примеры устройств, разработанных с применением данного метода.

Результаты тестирования в рабочем режиме показывают, что измеренный рост температуры хорошо согласуется с данными расчетов.

В зависимости от количества тепла, генерируемого протекающими токами, можно выбрать толщину медных дорожек 35 мкм или 70 мкм. Между слоями первичной и вторичной обмотки требуется расстояние 400 мкм для обеспечения развязки от сети. Комбинация E-PLT18 имеет минимальное окно намотки 1,8 мм. Это достаточно при толщине дорожек 35 мкм, которая дает суммарную толщину печатной платы около 1710 мкм.

Для удешевления конструкции мы выбрали расстояние между дорожками, равное 300 мкм. Вычисление ширины дорожки вторичной обмотки по формуле (5) дает результат 1,06 мм, включая развязку от сети.

Воспользовавшись диаграммой на рис. 5 и рассчитанным (см. табл. 2) эффективным значением тока во вторичной обмотке, равным 1,6 А, получаем рост температуры 25 °C для дорожек толщиной 35 мкм и около 7 °C для дорожек толщиной 70 мкм.

Мы приняли, что рост температуры, вызванный потерями в обмотке, составляет около половины суммарного роста температуры, в данном случае 17,5 °C. Очевидно, что при толщине дорожек 35 мкм рост температуры, вызываемый эффективным током 1,6 А, будет слишком велик, поэтому придется использовать дорожки толщиной 70 мкм.

Ширину дорожек витков первичной обмотки можно вычислить по формуле (5). Она окажется равной приблизительно 416 мкм. При такой ширине дорожек эффективный ток величиной 0,24 А в первичной обмотке вряд ли приведет к какому-либо повышению температуры.

Поскольку частота равна 120 кГц, ожидается дополнительный рост температуры печатной платы величиной около 2 °C по сравнению с ситуацией, когда протекают только постоянные токи. Суммарный рост температуры печатной платы, вызванный только протекающими токами, будет оставаться на уровне ниже 10 °C.

Шестислойная печатная плата с дорожками толщиной 70 мкм должна функционировать в соответствии с рассчитанными параметрами. Номинальная толщина печатной платы составит около 1920 мкм, что означает, что стандартная комбинация E-PLT18 из Ш-образного сердечника и пластины в данном случае не подойдет. Можно использовать стандартную комбинацию E-E18 из двух Ш-образных сердечников с окном намотки 3,6 мм. Однако столь большое окно намотки представляется здесь излишним, так что более элегантным решением был бы нестандартный сердечник, имеющий окно размером около 2 мм.

Измерения, проведенные на сравнимой конструкции с сердечником из двух Ш-образных половин из феррита 3C90, зафиксировали суммарный рост температуры 28 °C. Это согласуется с нашими расчетами, которые дали рост температуры 17,5 °C за счет потерь в сердечнике и 10 °C за счет потерь в обмотке.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *